LowPT: Chasing the Dphi problem Lina Galtieri, Bill Quayle, Simone Pagan Griso #### Outline: Looking at shapes of distributions for data and background in the 2011 sample (2011 analysis) Focusing on a few plots for today ### E-mu and mu-e channels - Most impressive disagreement between data and expectation is in the plots below. Obtained by vetoing signal events. - For the e-mu (left): expect 22, observe 34 - For the mu-e (right): expect 40, observe 17 (Numbers read off the graphs) ### **COMMENT ON SLIDE 2.** • If I compare the blinded plot on slide 2, with the unblinded one shown here. I notice that the W+jet contribution on the mu-SubLe (right) has been reduced very little in Dphi<1.8, while the one on the e-muSL(left) has been reduced a lot. • I find: emu 17.0--> 5.7 ratio: 0.34 mue 32.6--> 25.4 0.78 • Our statement that the background in the mu-SubLe is overestimated depends on how this is done. ### PENN Reanalysis - The PENN reanalysis of the 2011 data, shows a different situation. The prediction for both the e-mu and the mu-e channels are very close to the observed values - Counting # of events from the plots for Dphi< 1.8, I get: - For the e-mu Expect 16.5 observe 22 - For the mu-e Expect 30 observe 28 BACKGROUND ESTIMATES LOOK MUCH BETTER!!! #### REANALYSIS CAF RESULTS From Antonio's files: blinded plots at the Jet Veto Level - Counting # of events from the plots I get for DPhi<1.8 - For the e-mu: Antonio Expect 11.2 observe 20 NOT SO GOOD! Doug " **16.5** " **22** For the mu-e Antonio Expect 10.2 observe 11 Doug " 30 " 28 #### Quite a disagreement! Clearly background is different #### REANALYSIS COMPARISON From Antonio's files: blinded plots at the Jet Veto Level - Counting # of events from the plots I get for DPhi<2.0 - For the e-mu: Expect 19.4 observe 24 NOT AS BAD! For the mu-e: Expect 20.2 observe 17 Notice, however, that the inclusion of the 1.8-2. bin has washed out the disagreement a bit ## Backup Slides ## **Backup Slides** ### Flavor Dependence of Excess Need to understand how Antonio's break trough (contamination of the subleading muons) enters into the excess. #### Cutflow for different flavors | Lepton channel | ee | μμ | eμ | all | | |--|-----------------|----------------|----------------|----------------|-------------------| | Cut 11 | | | | | | | signal | 2.2 ± 0.2 | 5.1 ± 0.3 | 13.3 ± 0.9 | 20.6 ± 1.3 | | | Total Back | 159 ± 24 | 271 ± 33 | 770 ± 114 | 1201 ± 170 | | | observed | 144 | 263 | 828 | 1235 | | | Jet Veto | | | | | | | signal | 1.4 ± 0.1 | 3.3 ± 0.3 | 8.9 ± 0.8 | 13.6 ± 1.2 | | | Total Back. | 41 ± 9 | 80 ± 15 | 255 ± 63 | 376 ± 85 | | | observed | 43 | 81 | 282 | 406 | | | $P_{T,ll} > 45,30 \text{ GeV}$ | | | | | | | signal | 0.76 ± 0.08 | 1.6 ± 0.2 | 7.5 ± 0.7 | 9.8 ± 1.9 | 1 | | Total Back. | 9.7 ± 3.1 | 15 ± 2 | 90 ± 10 | 115 ± 14 | <pre>excess</pre> | | observed | 6 | 20 | 117 | 143 | CAGGGG | | Final Sample, with $\Delta \Phi < 1.8$ | | | | | | | signal | 8.9 ± 0.8 | 0.7 ± 0.1 | 1.6 ± 1.1 | 6.6 ± 0.6 | | | Total Back. | 9.3 ± 3.0 | 14.2 ± 2.3 | 73 ± 8 | 96 ± 11 | <pre>excess</pre> | | Observed | 5 | 19 | 100 | 124 | | No excess in ee, excess in both $e\mu$ and $\mu\mu$ # Trigger effect?